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To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and
their effect on biomembranes, we have investigated the influence of three structurally different nitro-
polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the
thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane
models, by means of differential scanning calorimetry. The obtained results indicate that the studied
nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to
various extents, modifying the pretransition and the main phase transition peaks and shifting them to
lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these
compounds by the biomembrane models has been also investigated revealing that the process is hin-
dered by the aqueous medium but strongly allowed by the lipophilic medium.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Nitro-polycyclic aromatic hydrocarbons (nitroPAHs) originate
primarily as direct or indirect products of incomplete combustion
of polycyclic aromatic hydrocarbons (PAHs), which contain two
or more aromatic rings (Pitts et al., 1978; Li et al., 2000). Only a
few nitroPAHs are produced industrially.

NitroPAHs occur in the environment as a mixture together with
parent PAHs and hundreds of other organic compounds either in
the vapor phase or adsorbed to particulate matter (Ohnishi et al.,
1985). Although a wide variety of bacteria, fungi and algae have
been shown to degrade the parent PAHs containing two to five
rings, nitro-substituted PAHs are only slowly degraded by indige-
nous microorganisms and may persist in soils and sediments.
The recalcitrance of high molecular weight nitroPAHs is due in part
to the strong adsorption to soil organic matter, low solubility, large
molecular size and the polar character of the nitro group (Cerniglia
and Somerville, 1995).

Experimental evidence indicates that nitro-polycyclic aromatic
hydrocarbons are ‘‘direct-acting” mutagens in procaryotic and
eucaryotic cells (IPCS, Environmental Health Criteria 229, 2003;
Pedersen et al., 2005), are carcinogenic (Beije and Moller, 1988;
IARC, 1989; Fu, 1990; Cui et al., 1995; Malejka-Giganti et al.,
1999; Purohit and Basu, 2000; Lewtas, 2007), are metabolized to
derivatives which bind to DNA and proteins (King et al., 1983;
Landvik et al., 2007), and induce unscheduled DNA synthesis
ll rights reserved.

: +39 095 580138.
).
(Campbell et al., 1981), sister chromatid exchanges (Marshall
et al., 1982), and DNA transformation (Lewtas, 2007).

Because of their widespread presence in the environment and
genotoxic activities, including mutagenicity and carcinogenicity,
many of these compounds may pose a health risk to humans.

To exert their mutagenic activity nitroPAHs have to cross the
biological membranes. The cytoplasmic membrane of cells consists
of a phospholipid bilayer forming a matrix in which enzymes and
transport proteins are embedded. The cytoplasmic membrane per-
mits the solute transport, plays an important role in the mainte-
nance of the energy status of the cell, regulation of the
intracellular environment, turgor pressure, signal transduction,
and other processes. Although the lipid molecules constitute only
a part of the total membrane mass, they form the matrix in which
the other components are embedded. The physical properties of
the cytoplasmic membrane influence the structure and functioning
of the other components.

Few publications deal with the interaction of PAHs with bio-
membrane models (Castelli et al., 2002; Librando et al., 2003; Farkas
et al., 2004) and just very few, to our knowledge, reports on the ef-
fect of nitroPAHs on biomembrane model (Castelli et al., 2001). Fol-
lowing the experimental procedure previously reported (Castelli
et al., 2002; Librando et al., 2005, 2006), we have studied the inter-
action of three nitroPAHs (2-nitrofluorene, 2,7-dinitrofluorene and
3-nitrofluoranthene, Scheme 1) with biomembrane models consti-
tuted by dimyristoylphosphatidylcholine (DMPC) multilamellar
vesicles (MLV) with the aim to better define how structural differ-
ences in the compounds can affect their interaction with the bio-
membranes. Kinetic experiments have been also carried out to
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Scheme 1. 2,7-Dinitrofluorene, 2-nitrofluorene and 3-nitrofluoranthene structure.
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investigate the effect of the aqueous and lipophilic medium on the
absorption of these compounds by the biomembrane models. DMPC
MLV undergo, upon heating, to a transition from an ordered or gel
state to a disordered or liquid-crystalline state characterized by a
well defined temperature called transition temperature (Tm) and
an enthalpy change (DH). Substances interacting with DMPC MLV
can provoke modifications on the Tm and enthalpy change. Differen-
tial scanning calorimetry (DSC), which detects these modifications,
has been employed to study the interaction and the absorption of
the nitroPAHs by biomembrane models. Finally, with the aim to
get knowledge on the effect of the NO2 group on such interaction,
the obtained results have been compared with the data of a previous
paper of us (Librando et al., 2003), where the interaction of fluorene
and fluoranthene with biomembrane models was investigated.

2. Materials and methods

2.1. Chemicals

Dimyristoylphosphatidylcholine was purchased from Genzyme
Pharmaceuticals (Liestal, Switzerland). Lipids were chromato-
graphically pure as assessed by two-dimensional thin-layer chro-
matography. Lipid concentration was determined by the
phosphorous analysis (Rouser et al., 1970). 2-Nitrofluorene (purity:
98%) was obtained from Sigma (Germany), 3-nitrofluoranthene
(purity: >99%) was obtained from Fluka (Germany), 2,7-dinitroflu-
orene (purity: 98%) was supplied by Alfa Aesar (Germany). A
50 mM Tris-hydroxymethylaminomethane (Tris) buffer solution,
adjusted to pH 7.4, was employed.

2.2. Multilamellar vesicles preparation

Stock solutions of lipid and nitroPAHs were prepared in chloro-
form:methanol 1:1 (dimyristoylphosphatidylcholine, 2-nitrofluo-
rene, 3-nitrofluoranthene) or in chloroform (2,7-dinitrofluorene).
Then appropriate aliquots of lipid and of each nitroPAH were
mixed in a glass tube to have 0.010325 mmol of DMPC and the fol-
lowing molar fractions of nitroPAH: 0.00, 0.015, 0.03, 0.045, 0.06,
0.09, 0.12, 0.15 and 0.18. The solvents were evaporated under a
nitrogen flow. Further evaporation was carried out by keeping
the samples under vacuum for 1 h. Dry lipid films were suspended
with 168 lL of Tris pH 7.4 and the multilamellar liposomes were
prepared by vortexing the samples for 1 min, keeping at 37 �C
(above the gel-to-liquid-crystalline phase transition temperature)
1 min for three times. The obtained MLV were kept, 1 h, at 37 �C
to permit their homogenization and the complete partition of each
compound between the aqueous and lipid phases. Each prepara-
tion was carried out in triplicate.

2.3. Differential scanning calorimetry measurements

The DSC measurements were performed using a Mettler Toledo
STARe system equipped with a DSC-822e calorimetric cell and a
Mettler TA-STARe software. One hundred and sixty microlitres of
aluminum pans were used. The samples were submitted, at least
four times to check the results reproducibility (indicating the
MLV homogeneity), to the following procedure:

(a) A heating scan between 5 and 37 �C at 2 �C/min.
(b) A cooling scan between 37 and 5 �C at 4 �C/min.

The sensitivity was automatically chosen as the maximum pos-
sible by the calorimetric system and the reference pan was filled
with Tris buffer solution. DSC was calibrated, in temperature and
enthalpy changes, by using indium, stearic acid and cyclohexane
by following the procedure of the DSC 822 Mettler TA STARe

instrument.
After the calorimetric analysis, aliquots of all samples were ex-

tracted from the calorimetric aluminum pans and used to deter-
mine, by the phosphorous assay (Rouser et al., 1970), the exact
amount of phospholipids present.

2.4. Permeation kinetic experiments

An exact amount of the examined powdered compounds (to ob-
tain a 0.09 molar fraction with respect to the lipid) was weighted
in the bottom of the DSC aluminum pan and 120 lL
(0.007375 mmol) of the DMPC MLV aqueous dispersion were
added. The aluminum pan was hermetically sealed and the sample
submitted to the following calorimetric analysis:

(a) A heating scan between 5 and 37 �C, at the rate of 2 �C/min,
to detect any interaction between compound and MLV.

(b) An isothermal scan (1 h) at 37 �C, to permit the compound to
eventually dissolve in the medium, reach the MLV surface,
penetrate the phospholipid bilayers and interact with them.

(c) A cooling scan between 37 and 5 �C, at the rate of 4 �C, to
bring the phospholipid system back to the ordered state.

The procedure was run at least eight times, to follow any vari-
ation in the calorimetric curves during the incubation time. The
experiments were run in triplicate.

2.5. Transmembrane transfer experiments

Sixty microlitres (0.003687 mmol) of DMPC MLV dispersion
prepared in the presence of 0.09 molar fraction of each compound
(loaded MLV) were delivered in the DSC aluminum pan and 60 lL
of an equimolar DMPC MLV dispersion (empty MLV) were added.
The pan was hermetically sealed and the sample was submitted
to the calorimetric analysis following the same procedure reported
in ‘‘Permeation kinetic experiments” section. The experiments
were carried out in triplicate.
3. Results and discussion

The nitroPAHs used in this study have been selected on the ba-
sis of their toxic properties and structural differences to evaluate
the significance of different structural elements of their molecules
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on thermotropic properties of DMPC multibilayers such as cooper-
ativity, temperature shift of the pretransition and the main phase
transition and changes of enthalpy. We have prepared and
analyzed, by DSC, DMPC MLV in the presence of increasing molar
fraction of nitroPAHs. The calorimetric curves of all the nitroP-
AHs–DMPC MLV are compared to that of pure DMPC MLV
(Fig. 1). As it is known, DMPC shows two endothermic peaks: a
main peak at 24.8 �C and a smaller peak at 15–16 �C. The main
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Fig. 1. Calorimetric curves, in heating mode, of DMPC MLV prepared in the presence of
nitrofluoranthene.
peak is related to the transition from a gel phase (Lb) to a liquid-
crystalline (La) phase. In the gel phase, occurring at lower temper-
atures, the lipid chains are ordered with all-trans conformation.
The liquid-crystalline phase, occurring at higher temperatures is
characterized by rapid trans–gauche isomerism of the lipid chain
segments, rotation around the long axis of the lipid mole-
cules; the lateral packing density is reduced considerably, relative
to that of the gel phase. Between the Lb phase and the La phase, an
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Fig. 3. Calorimetric curves, in heating mode, of DMPC MLV left in contact with a 0.09 mol
at increasing incubation time. Curves tinf belong to DMPC MLV prepared in the presence
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intermediate gel phase, called the ripple phase, is observed in
which the bilayer surface is undulated and the lipid chains are
tilted with respect to the layer normal. The transition from the
gel phase to the ripple phase is called pretransition and is related
to the smaller peak called the pretransition peak (Marsh, 1995;
Walde, 2004). Any variation in the pure DMPC MLV calorimetric
curve indicates that the compounds are able to interact with DMPC
bilayers. As far as concern the pretransition peak, there are big dif-
ferences between 2,7-dinitrofluorene, with two NO2 groups, and
the other two compounds, with one nitro group. In the presence
of 2,7-dinitrofluorene (Fig. 1A), the pretransition peak is clearly
evident for all the molar fractions even though slightly shifted to-
wards lower temperature. In the case of 2-nitrofluorene (Fig. 1B),
the pretransition is barely evident whereas for 3-nitrofluoranthene
(Fig. 1C) it is evident but largely shifted to lower temperature up to
0.03 molar fraction then it completely disappears. Speaking about
the main peak, 2,7-dinitrofluorene does not cause evident varia-
tions neither in its shape nor in its dimension, for all the examined
molar fractions, and the transition temperature remains almost
unchanged; 2-nitrofluorene, as its molar fraction increases causes
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the main peak to become smaller and to move toward lower
temperature (at low molar fraction); 3-nitrofluoranthene causes
the broadening, the reduction and the shift to lower temperatures
of the main peak. The effects of the studied compounds on the
transition temperature are compared in Fig. 2 where the tempera-
ture variation is reported as DT=T0

m (DT ¼ Tm � T0
m, where Tm is the

transition temperature of the DMPC MLV prepared in the presence
of nitroPAHs and T0

m is the transition temperature of pure DMPC
MLV) as a function of their molar fraction present in the MLV aque-
ous dispersion. The data are obtained from experiments carried out
in triplicate and the standard deviation was less than 1.5%.
2,7-Dinitrofluorene exerts the weakest effect on the transition
temperature. The strongest decrease of the temperature of the
gel-to-liquid-crystalline phase transition is caused by 3-nitrofluo-
ranthene, followed by 2-nitrofluorene. A part of 2,7-dinitroflourene
which shows an almost flat profile, for the other compounds the
transition temperature decreases as the molar fraction rises, up
to a certain value (that is 0.03 for 2-nitrofluorene and 0.06 for 3-
nitrofluoranthene) then no further big variations are seen.

A clear relationship is evident between the compound structure
and their interaction with the biomembrane models. In fact, the
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fluoranthene nitro-derivative exerts a bigger effect than the fluo-
rene derivatives. In addition, among the two fluorene nitro-deriva-
tives, 2-nitrofluorene shows a stronger interaction with DMPC
with respect to 2,7-dinitrofluorene. As a decrease of the Tm

indicates an increase of the phospholipid bilayer fluidization,
3-nitrofluoranthene, among the studied compounds, exerts the
maximum fluidization effect. Inside the phospholipid bilayers,
compounds can act as interstitial impurities intercalating between
the phospholipid molecules and causing a Tm decrease with no
modifications in the DH values or as substitutional impurities tak-
ing the place of the phospholipid molecules and causing a Tm and
DH decrease (Jorgensen et al., 1991; Tenchov, 1991; Castelli
et al., 1992). 2,7-Nitrofluorene does not affect in an evident way
the transition temperature nor the enthalpy change (data not
shown) whereas 2-nitrofluorene and, even more, 3-nitrofluoranth-
ene cause a decrease of the transition temperature as well as of the
enthalpy change (data not shown) and then, it is reasonable to say
that they behavior as substitutional impurities. The preparation
and stabilization method used for these experiments allows the
best contact between nitroPAHs and phospholipids, the distribu-
tion of nitroPAHs inside the biomembrane model and, conse-
quently, their complete partition between aqueous and
phospholipidic phases; then, the results obtained from these mea-
surements can be considered the maximum interaction between
the studied compounds and the biomembrane models and will
be used as reference for the following experiments.

To get information on the absorption of nitroPAHs by biomem-
branes mediated by the aqueous medium we have carried out
experiments in which a fixed amount (corresponding to a 0.09 mo-
lar fraction with respect to the phospholipid) of powdered nitroP-
AHs has been weighted in the bottom of the calorimetric pan and
DMPC MLV aqueous dispersion has been added and the interaction
between the nitroPAHs and the phospholipid bilayers has been
monitored at increasing incubation periods. A 0.09 molar fraction
was used in these experiments as, in the experiments where
MLV were prepared in the presence of increasing molar fraction
of nitroPAHs, it gave a good calorimetric peak shifted towards low-
er temperature due to a good interaction nitroPAHs/MLV. The calo-
rimetric curves are reported in Fig. 3. The curve tinf represents the
maximum possible interaction between nitroPAHs and DMPC
bilayers as it belongs to DMPC MLV prepared in the presence of
0.09 molar fraction of nitroPAHs as described in MLV preparation
(see Fig. 1A–C). If the compounds were able to dissolve and, succes-
sively, migrate through the aqueous medium, reaching the MLV
surface and interacting with the phospholipid bilayers, the calori-
metric curves should gradually become similar to tinf curve. The
calorimetric curves of all the studied compounds do not show vari-
ations neither in the main nor in the pretransition peak; and the
curve tinf is not reached. The transition temperature, as DT=T0

m,
has been plotted in Fig. 4 as a function of the incubation time.
The data are obtained from experiments carried out in triplicate
and the standard deviation was less than 1.5%. No important vari-
ations are seen along the incubation time. From the obtained re-
sults it is reasonable that the studied nitroPAHs, probably due to
their highly lipophilic nature and to their low water solubility
(IPCS, Environmental Health Criteria 229, 2003) are not able to dis-
solve in the aqueous medium and, consequently, do not reach and
interact with the phospholipid membranes. Hence, the nitroPAHs
absorption by the phospholipid membranes is hindered by the
aqueous medium.

A series of experiments has been carried out to verify if the lipo-
philic medium can favor the nitroPAHs absorption by the biomem-
branes model. With this aim, nitroPAHs (0.09 molar fraction)
loaded MLV, which mimic a lipophilic carrier, have been prepared
and put in contact with empty MLV and the transfer of nitroPAHs
from loaded to empty MLV has been monitored by DSC analysis at
increasing incubation periods. The calorimetric curves have been
compared with those of the samples which were put in contact
and that of the MLV prepared in the presence of nitroPAHs at
0.045 molar fraction which is considered a reference curve (curve
tinf) (Fig. 5). If the nitroPAHs completely transfer from loaded to
empty MLV, as the incubation time increases, at the end of the pro-
cess a MLV population containing a 0.045 molar fraction of nitroP-
AHs will be present and a curve similar to curve tinf should be
obtained. As far as concern 2,7-dinitrofluorene (Fig. 5A) no impor-
tant variations are visible, in fact, the pretransition as well as the
main peak remain almost unchanged. The calorimetric curves re-
lated to 2-nitrofluorene (Fig. 5B) show the disappearance of the
pretransition peak at the second scan (obtained after 1 h the
loaded and empty MLV had been put in contact) and the shift of
the main peak toward lower temperature reaching the curve tinf.
In the calorimetric curves related to experiments carried out with
3-nitrofluoranthene (Fig. 5C), the pretransition peak is no more
present from the second scan (after 1 h incubation) and the main
peak shifts toward lower temperature. The curve tinf is almost
reached. The transition temperature of these curves is reported
in Fig. 6, as DT=T0

m, as a function of the incubation time. tinf values
represent the results obtained from the curves tinf (prepared in the
presence of 0.045 molar fraction of compounds). The data are ob-
tained from experiments carried out in triplicate and the standard
deviation was less than 1.5%. An almost flat line is obtained for 2,7-
dinitrofluorene. With regard to 2-nitrofluorene, within the first
hour of incubation, the transition temperature largely decreases
and then remains constant. Anyway the value tinf is reached. As
to 3-nitrofluoranthene, the transition temperature gradually de-
creases up to 5 h of incubation, then remains almost constant with-
out reaching the value tinf. These results suggest that the nitroPAHs
transfer from loaded to unloaded MLV and hence that that their
absorption by the biomembrane models is favored by a lipophilic
medium more than an aqueous medium does.

These results are in agreement with the water solubility and the
octanol–water partition coefficients (logKow) of the nitroPAHs. In
fact, the low water solubility joined to the high logKow values (2-
fluorene = 3.37; 2,7-dinitrofluorene = 3.35; 3-nitrofluoranthene =
4.69) (IPCS, Environmental Health Criteria 229, 2003), on one hand
do not allow the nitroPAHs to solubilize in the aqueous medium
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and reach and be absorbed by the biomembrane models on the
other hand let the nitroPAHs to easily diffuse through the lipophilic
medium, get in contact with the MLV surface, be absorbed by the
phospholipidic bilayers and interact with them.

To verify if the interaction of these compounds with the bio-
membrane models can be affected by the NO2 group, the results
obtained in this study have been compared with those of a previ-
ous paper of us (Librando et al., 2003) studying the interaction of
fluorene and fluoranthene with biomembrane models The compar-
ison highlights two significant differences: (a) the stronger interac-
tion of fluorene and fluoranthene with the biomembrane models
with respect to the nitro-derivatives used in the present study;
(b) fluorene and fluoranthene interact in a concentration depen-
dent way whereas the nitro-derivatives cause the decrease of the
DMPC Tm up to a certain molar fraction and then the Tm remains
constant. These results are in agreement with those obtained in a
precedent paper of some of us (Castelli et al., 2001) where the
interaction of pyrene and nitro-pyrene with biomembrane models
was studied.

4. Conclusions

In the present paper the interaction of 2,7-dinitrofluorene, 2-
nitrofluorene and 3-nitrofluoranthene with biomembrane models
has been studied with the aim to reveal the relationship between
the compounds structure and the effect on the biomembrane mod-
els. It has been found: (a) the following order of interaction: 3-
nitrofluoranthene > 2-nitrofluorene > 2,7-dinitrofluorene; (b) a
stronger interaction of PAHs with respect to the corresponding ni-
tro-derivatives.

Moreover, to have insight of the role of the medium on the
absorption of the compounds by the biomembrane models kinetic
experiments have been carried out which show that in an aqueous
medium the nitroPAHs are not absorbed by the biomembrane
models whereas when carried by a lipophilic medium the nitroP-
AHs are strongly taken up by the biomembrane models.
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